Discussion. Positional and equivalent isotropic thermal parameters are given in Table 1.* Bond distances and angles for the two independent cobalt(III) cations are nearly identical as is demonstrated in Table 2 and are in good agreement with the less accurate structures of trans-[CoCl $\left.\mathrm{l}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}$ (Becker, Grosse \& Plieth, 1959), trans- $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl} . \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Nakahara, Saito \& Kuroya, 1952), and trans- $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]_{2}-$ [CoCl_{4}] (Schubert, Zimmer-Gasser, Dash \& Chaudhury, 1981). The cations are close to $C_{2 h}$ symmetry, the deviation arising from a twist of the ethylenediamine ligand. The closest contact distances between the perchlorate anion and the cobalt chelates are $\mathrm{N}(2) \cdots \mathrm{O}(1) \quad 3.047(5)$ and $\mathrm{N}(2 A) \cdots \mathrm{O}(1)$ $3 \cdot 132$ (5) A. Figs. 1 and 2 illustrate the molecular structure of the cations and the unit-cell packing, respectively. Each Co atom occupies a special position (inversion center) in the unit cell. The ethylenediamine ligands must then adopt both δ and λ conformations in each molecule with $\mathrm{Cl}(\mathrm{Cl} A)$ and its symmetry-related pair making up the coordination. However, the two

[^0]molecules are crystallographically different since the inversion centers occupy either corner or edge positions. This results in alternating layers of cations which are rotated and tilted with respect to the previous set. The perchlorate anions are situated between the layers.

This work was supported by The Robert A. Welch Foundation, grant Nos. A-259 (AEM and ECN) and A-673 (AC and PRR).

References

Becker, K. A., Grosse, G. \& Plieth, K. (1959). Z. Kristallogr. 112, 375-384.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Cromer, D.T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Enraf-Nonius (1975). Structure Determination Package, revised 1981. Enraf-Nonius, Delft, Holland.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Nakahara, A., Saito, Y. \& Kuroya, H. (1952). Bull. Chem. Soc. $J p n, 25,331-336$.
Schubert, U., Zimmer-Gasser, B., Dash, K. C. \& Chaudhury, G. T. (1981). Cryst. Struct. Commun. 10, 129-243.

Springborg, J. \& Schaffer, C. R. (1973). Inorg. Synth. 14, 57-81.

cis/trans Disorder in (5-Bromo-4-pentenyl)triphenylphosphonium Iodide

By Barry M. Goldstein*
Department of Pharmacology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA
Fusao Takusagawa
Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

and Prem C. Srivastava and Furn F. Knapp Jr
Nuclear Medicine Group, \dagger Health and Safety Research Division, Oak Ridge, Tennessee 37831, USA

(Received 15 May 1985; accepted 6 November 1985)

Abstract. $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrP}^{+} . \mathrm{I}^{-}, \quad M_{r}=537 \cdot 2$, monoclinic, $P 2_{1} / c, a=9.196(1), b=18.494(1), c=14.576$ (1) \AA,

[^1]$\beta=116.53(1)^{\circ}, \quad V=2217.9 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.609 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=143.2 \mathrm{~cm}^{-1}$, $F(000)=1056$, room temperature, $R=0.069$ for 3786 observed reflections. The configuration of the triphenylphosphonium ion deviates substantially from that of a symmetrical propeller. The extended alkyl chain is disordered between the cis and trans
© 1986 International Union of Crystallography
conformers with occupancies of $\frac{2}{3}$ and $\frac{1}{3}$, respectively. The triphenylphosphonium cations pack head to tail along \mathbf{c} and head to head along \mathbf{b}, with the I^{-}anion sitting in a pocket bounded on two sides by alkyl chains of neighboring molecules.

Introduction. The title compound (1) is one of a series of lipophilic phosphonium cations designed for use as myocardial imaging agents. The trans iodo analogue of (1) showed high selective myocardial uptake in rats and dogs (Srivastava \& Knapp, 1984). This observation prompted the synthesis of the brominated compound (1), which showed similar uptake properties. However, the conformation across the olefinic bond in this agent was unknown. The crystal-structure determination of (1) was thus undertaken.

(1)

Experimental. Compound (1) synthesized in a manner similar to that described for the iodo analogue (Srivastava \& Knapp, 1984). Clear parallelpipedshaped crystals by recrystallization from chloroformpetroleum ether. Crystal size $0.27 \times 0.13 \times 0.07 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer with graphitemonochromated $\mathrm{Cu} K \alpha$ radiation. Lattice constants by least-squares refinement of 24 reflections in range $\theta=25-30^{\circ}$. Data collection by $\omega-2 \theta$ scan method in range $2<\theta<70^{\circ} .4110$ unique reflections measured in quadrant $\quad-11 \leq h \leq 0, \quad 0 \leq k \leq 22, \quad-16 \leq l \leq 16$. 3786 reflections with $\left|F_{o}\right|>\sigma\left(F_{o}\right)$ used in subsequent calculations. Three standard reflections showed no decay. Lp correction and empirical ψ-scan absorption correction $(0.65-1 \cdot 18)$ applied. I position from Patterson map. Remaining non-H atoms located from Fourier maps, which showed disorder between cis and trans conformers. All phenyl and two alkyl H atoms located from difference Fourier maps. Full-matrix least-squares refinement. Anisotropic for I, Br atoms and triphenylphosphonium moiety; isotropic for H atoms and disordered alkyl-chain C atoms. On the basis of initial refinements of occupancies of disordered atoms, occupancies fixed at $\frac{2}{3}$ for cis conformer, $\frac{1}{3}$ for trans conformer. The function minimized was $\sum w\left(\left|F_{o}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}+\sum w^{\prime}\left(D_{o}-D_{c}\right)^{2} . \quad D_{o}$ is the restrained interatomic distance, D_{c} the distance calculated from the structure. The second sum is over all atom pairs defining restrained bond lengths and angles (Takusagawa, 1982; Sussman, Holbrook, Church \& Kim, 1977). Weights were $w=1 /\left[\sigma^{2}\left(F_{o}\right)+0 \cdot 5 A\left|F_{o}\right|^{2}+\right.$
$\left.0 \cdot 5 B(\sin \theta / \lambda)^{2}\right]^{1 / 2}$. Weights w^{\prime} were adjusted to provide tight restraints, the maximum shift $\left|D_{o}-D_{c}\right|$ being $0.01 \AA$ (Konnert, 1976; Rollett, 1970). Convergence to $R=0.069, w R=0.082, S=1.51$ for 3786 reflections. $\Delta / \sigma<0.1$ and 1.4 for unrestrained and restrained atoms, respectively. $\Delta \rho_{\text {max }}=2 \cdot 1$ e \AA^{-3} in the region of the disordered alkyl chain. Restrained distances were $1.54 \AA$ for $\quad C(1)-C(2), \quad C(2)-C(3), \quad C\left(2^{\prime}\right)-C\left(3^{\prime}\right)$; $1.52 \AA$ for $C(3)-C(4), \quad C\left(3^{\prime}\right)-C\left(4^{\prime}\right) ; 1.34 \AA$ for $\mathrm{C}(4)-\mathrm{C}(5), \mathrm{C}\left(4^{\prime}\right)-\mathrm{C}\left(5^{\prime}\right)$ and $1.89 \AA$ for $\mathrm{C}(5)-\mathrm{Br}$, $\mathrm{C}\left(5^{\prime}\right)-\mathrm{Br}^{\prime}$ (Sutton, 1965). Restrained angles about $s p^{2}$ and $s p^{3} \mathrm{C}$ atoms in the alkyl chain were 120 and 109.5°, respectively. Atomic scattering factors and anomalous-dispersion corrections (for I and Br) from International Tables for X-ray Crystallography (1974). Computations using the $D N A$ system (Takusagawa, 1981) and a modification of program CRLS (Takusagawa, 1982).

Discussion. Atomic coordinates are listed in Table 1.* Unrestrained bond lengths, angles and selected torsion angles are listed in Table 2.

The molecular structure is illustrated in Fig. 1. The crystal is composed of a mixture of $\frac{2}{3}$ cis and $\frac{1}{3}$ trans conformers with random site-occupancy. The alkyl chain is extended in both cases, the Br and Br^{\prime} positions lying within $0.5 \AA$ of each other. Subsequent NMR and radiolabeling studies have confirmed that both conformers are taken up preferentially by myocardial cells in vivo (Srivastava, Knapp \& Goldstein, 1985).

The $\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$ bond angle is $120.9(5)^{\circ}$. This is probably due in part to a distortion in the $P \cdots C(2)$ distance introduced by the restraint placed on the $C(1)-C(2)$ bond. However, large distortions from tetrahedral angles are not uncommon about $s p^{3}$ hybridized alkyl-chain C atoms. Values of 117.0 (3), 117.2 (4) and $118.6(2)^{\circ}$ have been observed about $\mathrm{C}\left(s p^{3}\right)$ atoms in other triphenylphosphonium structures, due to both intra- and intermolecular steric factors (Kovács \& Párkányi, 1982; Hjortås, 1973; Toupet, Weinberger, Abbayes \& Gross, 1984).

The $\mathrm{P}-\mathrm{C}(1)$ bond length of 1.773 (7) \AA falls within the rather wide range of observed $\mathrm{Ph}_{3} \mathrm{P}-\mathrm{C}\left(s p^{3}\right)$ bond lengths [e.g. $1.755(3) \AA$ (Toupet et al., 1984), 1.814 (3) \AA (Kovács \& Párkányi, 1982)]. The P $\mathrm{C}\left(s p^{2}\right)$ bond lengths are within the expected range and the bond angles about the P atom show only small deviations from a tetrahedral geometry. The phenyl groups are planar within experimental error. The triphenylphosphonium moiety shows significant deviations from C_{3} symmetry, ring a being rotated about the $\mathrm{P}-\mathrm{C}\left(s p^{2}\right)$ bond to a greater extent than rings

[^2]b and c. On the basis of a survey of a large number of triphenylphosphine structures, Bye, Schweizer \& Dunitz (1982) have proposed a pathway for the stereoisomerization of an equilibrium C_{3}-symmetric structure to its enantiomer. The triphenylphosphonium geometry observed here $\left[\varphi_{a}=-65.9(5), \varphi_{b}=+18.1\right.$ (4), $\varphi_{c}=$ $\left.-22.7(6)^{\circ}\right]$ would lie along this pathway roughly between the C_{3}-symmetric structure and a putative transition-state structure with torsion angles $\varphi_{a}=-90$, $\varphi_{b}=+10, \varphi_{c}=-10^{\circ}$ (Bye et al., 1982).

Crystal packing is illustrated in Fig. 2. The triphenylphosphonium cations pack head to tail along \mathbf{c} and head to head along b. The I^{-}anion sits in a pocket bounded on two sides by alkyl chains of neighboring molecules. It forms marginally close contacts of $3.842(9) \AA$ with $\mathrm{C}\left(3^{\prime}\right)(x, y, z), 3.780(6) \AA$ with $\mathrm{C}(4)(2-x, 1-y,-z)$ and $3.831(5) \AA$ with $\mathrm{C}(5)$ ($2-x, 1-y,-z$).

Table 1. Fractional coordinates and isotropic thermal parameters

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$B / B_{\text {cu }}\left(\AA^{2}\right)$
I	0.75355 (7)	0.57845 (3)	$0 \cdot 15598$ (5)	$6 \cdot 0$ (1)
P	0.7315 (2)	$0 \cdot 30747$ (8)	$0 \cdot 1379$ (1)	$3 \cdot 2$ (1)
C(1a)	0.7488 (8)	0.2247 (3)	0.0787 (4)	3.4 (4)
C(2a)	0.6113 (12)	0.2031 (4)	-0.0097 (6)	4.9 (5)
C(3a)	0.6251 (12)	0.1439 (5)	-0.0634 (7)	$6 \cdot 3$ (6)
C(4a)	0.7675 (12)	$0 \cdot 1072$ (5)	-0.0307 (7)	5.7 (5)
C(5a)	0.8994 (10)	0.1274 (5)	0.0562 (7)	$5 \cdot 3$ (5)
C(6a)	0.8919 (9)	0.1866 (4)	0.1113 (6)	4.4 (5)
C(lb)	0.9098 (7)	0.3216 (3)	0.2570 (4)	$3 \cdot 3$ (4)
C(2b)	0.9802 (9)	0.3891 (4)	0.2819 (6)	$4 \cdot 2$ (4)
C(3b)	$1 \cdot 1152$ (10)	0.3996 (5)	0.3759 (6)	5.3 (5)
$\mathrm{C}(4 b)$	1.1762 (10)	0.3437 (5)	0.4433 (6)	$5 \cdot 6$ (5)
C(5b)	$1 \cdot 1068$ (10)	0.2765 (5)	0.4204 (6)	5.4 (5)
C(6b)	0.9718 (12)	0.2653 (4)	0.3278 (5)	$4 \cdot 6$ (4)
C(1c)	0.5566 (7)	0.3030 (3)	0.1604 (5)	$3 \cdot 5$ (4)
$\mathrm{C}(2 c)$	0.4557 (8)	0.3626 (4)	$0 \cdot 1446$ (6)	$4 \cdot 2$ (4)
C(3c)	0.3244 (9)	0.3588 (5)	0.1664 (7)	$5 \cdot 1$ (5)
$\mathrm{C}(4 \mathrm{c})$	0.2928 (9)	0.2959 (5)	0.2037 (7)	$5 \cdot 2$ (5)
$\mathrm{C}(5 \mathrm{c})$	0.3889 (10)	0.2353 (5)	0.2184 (7)	$5 \cdot 1$ (5)
$\mathrm{C}(6 \mathrm{c})$	0.5221 (9)	0.2392 (4)	$0 \cdot 1978$ (6)	4.4 (4)
C(1)	0.7086 (6)	0.3787 (3)	0.0511 (5)	$4 \cdot 1$ (4)
C(2)	0.8175 (6)	0.3832 (4)	-0.0043 (6)	7.1 (4)
$\mathrm{C}(3)^{*}$	0.7290 (7)	0.4297 (7)	-0.1012 (6)	8.2 (4)
$\mathrm{C}\left(3^{\prime}\right) \dagger$	0.8089 (11)	0.4609 (4)	-0.0435 (7)	$8 \cdot 3$ (8)
$\mathrm{C}(4)^{*}$	0.8425 (7)	0.4429 (6)	-0.1492 (2)	$6 \cdot 1$ (3)
$\mathrm{C}\left(4^{\prime}\right) \dagger$	0.6798 (9)	0.4641 (5)	-0.1546 (7)	$12 \cdot 2$ (14)
$\mathrm{C}(5)^{*}$	0.7872 (5)	0.4428 (7)	-0.2511 (4)	5.8 (3)
$\mathrm{C}\left(5^{\prime}\right) \dagger$	0.7206 (10)	0.4483 (10)	-0.2300 (5)	$4 \cdot 0$ (3)
Br^{*}	0.5665 (5)	0.4644 (2)	-0.3376 (2)	$6 \cdot 8(2)$
$\mathrm{Br}^{\prime} \dagger$	0.5657 (8)	0.4591 (4)	-0.3688 (3)	4.9 (4)
H(1)	0.708 (8)	0.423 (3)	0.083 (5)	4 (1)
H(1')	0.603 (8)	0.379 (3)	0.003 (5)	3 (1)
$\mathrm{H}(2 a)$	$0 \cdot 502$ (10)	0.229 (5)	-0.037 (6)	6 (2)
$\mathrm{H}(3 a)$	0.525 (12)	0.127 (5)	-0.108 (8)	8 (2)
H(4a)	0.788 (11)	0.069 (5)	-0.078 (8)	7 (2)
H(5a)	0.994 (9)	0.103 (4)	0.083 (6)	5 (2)
$\mathrm{H}(6 a)$	0.977 (12)	0.201 (6)	0.161 (8)	8 (3)
$\mathrm{H}(2 b)$	0.934 (9)	0.431 (4)	0.225 (6)	5 (2)
$\mathrm{H}(3 b)$	1.167 (11)	0.450 (5)	0.392 (8)	7 (2)
$\mathrm{H}(4 b)$	1.277 (11)	0.352 (5)	0.503 (8)	7 (2)
H(5b)	$1 \cdot 156$ (11)	0.231 (5)	0.470 (7)	7 (2)
H(6b)	0.916 (9)	0.215 (4)	0.314 (6)	5 (2)
$\mathrm{H}(2 \mathrm{c})$	0.485 (10)	0.406 (5)	0.128 (7)	6 (2)
$\mathrm{H}(3 \mathrm{c})$	0.242 (11)	0.407 (6)	0.150 (7)	7 (3)
$\mathrm{H}(4 \mathrm{c})$	0.199 (9)	0.290 (4)	0.224 (6)	5 (2)
$\mathrm{H}(5 \mathrm{c})$	0.390 (12)	0.189 (6)	0.249 (8)	9 (3)
$\mathrm{H}(6 \mathrm{c})$	0.576 (9)	0.197 (4)	0.203 (6)	4 (2)
* Occupancy $=\frac{2}{3}$. \dagger Occupancy $=\frac{1}{3}$.				

The authors thank Dr Helen M. Berman for the use of her diffraction facilities. This work was supported by NIH grants GM 21589, CA 06927, CA 09035, RR 05539 , ACS grant IN-18 and by a grant from the

Table 2. Selected bond distances (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

$\mathrm{P}-\mathrm{C}(1) \quad 1$	1.773 (7)	$\mathrm{C}(2 b)-\mathrm{C}(3 b)$	1.392 (9)
$\mathrm{P}-\mathrm{C}(1 a) \quad 1$	1.798 (7)	$\mathrm{C}(3 b)-\mathrm{C}(4 b)$	1.363 (12)
$\mathrm{P}-\mathrm{C}(16) \quad 1$	1.797 (5)	$\mathrm{C}(4 b)-\mathrm{C}(5 b)$	1.368 (13)
$\mathrm{P}-\mathrm{C}(1 \mathrm{c}) \quad 1$	1.782 (8)	$\mathrm{C}(5 b)-\mathrm{C}(6 \mathrm{~b})$	1.381 (9)
$\mathrm{C}(\mathrm{I} a)-\mathrm{C}(2 a) \quad 1$	1.402 (8)	$\mathrm{C}(6 \mathrm{~b})$ - $\mathrm{C}(1 b)$	1.395 (9)
$\mathrm{C}(2 a)-\mathrm{C}(3 a) \quad 1$	1.385 (14)	$\mathrm{C}(1 \mathrm{c})-\mathrm{C}(2 \mathrm{c})$	1.392 (10)
$\mathrm{C}(3 a)-\mathrm{C}(4 a) \quad 1$	1.358 (15)	$\mathrm{C}(2 c)-\mathrm{C}(3 c)$	1.381 (14)
$\mathrm{C}(4 a)-\mathrm{C}(5 a) \quad 1$	1.358(11)	$\mathrm{C}(3 \mathrm{c})-\mathrm{C}(4 \mathrm{c})$	1.369 (13)
$\mathrm{C}(5 a)-\mathrm{C}(6 a) \quad 1$	1.378 (13)	$\mathrm{C}(4 c)-\mathrm{C}(5 c)$	1.384 (13)
$\mathrm{C}(6 a)-\mathrm{C}(1 a) \quad 1$	1.377 (10)	$\mathrm{C}(5 c)-\mathrm{C}(6 \mathrm{c})$	1.388 (15)
$\mathrm{C}(1 b)-\mathrm{C}(2 b) \quad 1$	1.377 (9)	$\mathrm{C}(6 \mathrm{c})-\mathrm{C}(1 c)$	1.394 (1I)
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(1 a)$	107.4 (3)	$\mathrm{C}(6 b)-\mathrm{C}(16)-\mathrm{C}(2 b)$) 119.5 (5)
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(1 b)$	110.3 (3)	$\mathrm{C}(16)-\mathrm{C}(2 b)-\mathrm{C}(3 b)$) 119.5 (6)
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(1 \mathrm{c})$	109.7 (3)	$\mathrm{C}(2 b)-\mathrm{C}(3 b)-\mathrm{C}(4 b)$) $120.2(8)$
$\mathrm{C}(1 a)-\mathrm{P}-\mathrm{C}(1 b)$	110.5 (3)	$\mathrm{C}(3 b)-\mathrm{C}(4 b)-\mathrm{C}(5 b)$) 121.0 (7)
$\mathrm{C}(16)-\mathrm{P}-\mathrm{C}(1 \mathrm{c})$	109.7 (3)	$\mathrm{C}(4 b)-\mathrm{C}(5 b)-\mathrm{C}(6 b)$) 119.5 (7)
$\mathrm{C}(1 \mathrm{c})-\mathrm{P}-\mathrm{C}(1 a)$	109.2 (3)	$\mathrm{C}(5 b)-\mathrm{C}(6 b)-\mathrm{C}(16)$) $120.2(7)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	120.9 (5)	$\mathrm{C}(6 c)-\mathrm{C}(1 c)-\mathrm{C}(2 c)$	119.0 (8)
$\mathrm{C}(6 a)-\mathrm{C}(1 a)-\mathrm{C}(2 a)$	(2) 120.1(7)	$\mathrm{C}(1 \mathrm{c}-\mathrm{C}(2 \mathrm{c})-\mathrm{C}(3 \mathrm{c})$	120.5 (7)
$\mathrm{C}(1 a)-\mathrm{C}(2 a)-\mathrm{C}(3 a)$	a) 118.2 (7)	$\mathrm{C}(2 \mathrm{c})-\mathrm{C}(3 \mathrm{c})-\mathrm{C}(4 \mathrm{c})$	119.8 (8)
$\mathrm{C}(2 a)-\mathrm{C}(3 a)-\mathrm{C}(4 a)$	a) 121.0(7)	$\mathrm{C}(3 c)-\mathrm{C}(4 c)-\mathrm{C}(5 c)$	121.0 (9)
$\mathrm{C}(3 a)-\mathrm{C}(4 a)-\mathrm{C}(5 a)$	a) 120.6 (9)	$\mathrm{C}(4 c)-\mathrm{C}(5 c)-\mathrm{C}(6 \mathrm{c})$	119.3 (8)
$\mathrm{C}(4 a)-\mathrm{C}(5 a)-\mathrm{C}(6 a)$	(a) 120.4 (8)	$\mathrm{C}(5 c)-\mathrm{C}(6 c)-\mathrm{C}(\mathrm{lc})$	120.3 (7)
$\mathrm{C}(5 a)-\mathrm{C}(6 a)-\mathrm{C}(1 a)$	a) 119.7 (6)		
$\varphi_{a}\|\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(1 a)-\mathrm{C}(2 a)\|$ $\varphi_{b}\|\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(1 b)-\mathrm{C}(2 b)\|$ $\varphi_{c}\|\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(1 c)-\mathrm{C}(2 c)\|$		-65.9 (5)	
		18.1 (4)	
		-22.7(6)	

Fig. 1. Molecular structure of (1). The trans conformer is illustrated with unshaded dashed bonds.

Fig. 2. Molecular packing viewed approximately down the a axis. Only the cis conformer is shown. The shaded circles represent the I^{-}anions.

James P. Wilmot Foundation. The Oak Ridge National Laboratory is operated by the US Department of Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

References

Bye, E., Schweizer, W. B. \& Dunitz, J. D. (1982). J. Am. Chem. Soc. 104, 5893-5898.
Hjortàs, J. (1973). Acta Cryst. B29, 767-776.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Konnert, J. H. (1976). Acta Cryst. A 32, 614-617.
Kovács, T. \& Párkányi, L. (1982). Cryst. Struct. Commun. 11, 1565-1570.

Rollett, J. S. (1970). In Crystallographic Computing. Copenhagen: Munksgaard.
Srivastava, P. C. \& Knapp, F. F. Jr (1984). J. Med. Chem. 27, 978-981.
Srivastava, P. C., Knapp, F. F. Jr \& Goidstein, B. M. (1985). In preparation.
Sussman, J. L., Holbrook, S. R., Church, G. M. \& Kim, S.-H. (1977). Acta Cryst. A 33, 800-804.

Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement. Spec. Publ. No. 18. London: The Chemical Society.
Takusagawa, F. (1981). Crystallographic Computing System: $D N A$. The Institute for Cancer Research, Fox Chase, PA.
Takusagawa, F. (1982). Constrained-Restrained Least Squares (CRLS). Tech. Rep. ICR-1982-0001-0002-001. The Institute for Cancer Research, Fox Chase, PA.
Toupet, P. L., Weinberger, B., Abbayes, H. D. \& Gross, U. (1984). Acta Cryst. C40, 2056-2058.

Acta Cryst. (1986). C42, 573-575

Structure of 3-Nitro-4-oxopyrido[1,2-a]pyrimidin-1-ium-2-olate and its Ammonium Salt

By Ole Simonsen
Department of Chemistry, Odense University, DK-5230 Odense M, Denmark

(Received 20 September 1985; accepted 26 November 1985)

Abstract

C}_{8} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{4}\) (N -acid), $M_{r}=207 \cdot 15$, monoclinic, $\quad P 2_{1} / c, \quad a=4.7663$ (6), $\quad b=13.825$ (1), $\quad c=$ 12.205 (2) $\AA, \beta=96.45(1)^{\circ}, V=799.1$ (5) $\AA^{3}, Z=4$, $D_{m}=1.71$ (1), $\quad D_{x}=1.722$ (1) $\mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \quad \mu=0.132 \mathrm{~mm}^{-1}, \quad F(000)=424, \quad T=$ $295 \mathrm{~K}, R=0.039$ for 1727 unique observed reflections. $\mathrm{NH}_{4}^{+} . \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{4}^{-} \quad\left(\mathrm{NH}_{4}^{+}\right.$-salt), $\quad M_{r}=224 \cdot 18$, monoclinic, $\quad P 2_{1} / c, \quad a=7.489(1), \quad b=7.524$ (2), $\quad c=$ 16.401 (4) $\AA, \beta=94.37(1)^{\circ}, V=921 \cdot 5$ (8) $\AA^{3}, Z=4$, $D_{m}=1.62(1), \quad D_{x}=1.616(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71073 \AA, \quad \mu=0.124 \mathrm{~mm}^{-1}, \quad F(000)=464, \quad T=$ $295 \mathrm{~K}, R=0.056$ for 1517 unique observed reflections. The nitro group is out of plane with the ring system both in the N -acid and the NH_{4}^{+}-salt. Introduction of a nitro group between the two $\mathrm{C}-\mathrm{O}$ groups does not change the H -tautomeric form of the molecule, but induces a shortening of the $\mathrm{C}-\mathrm{O}$ bonds and an elongation of the $\mathrm{C}-\mathrm{C}$ bonds in α position to the nitro group. Formation of the NH_{4}^{+}-salt causes delocalization of negative charge from N to O through four bonds. The N -acid packs with centrosymmetric hydrogenbonded dimers. The NH_{4}^{+}-salt structure contains layers of cations.

Introduction. The structure determinations of 3-nitro-4-oxopyrido [$1,2-a$]pyrimidin-1-ium-2-olate and its ammonium salt are parts of a study of structural changes associated with the steps in the series: compound, nitro compound, anion of nitro compound.

0108-2701/86/050573-03\$01.50

Experimental. N -acid, prepared as described by Tschitschibabin (1924). Yellow-brown needles (adirection needle axis) were obtained from the slow cooling of a solution in boiling water. D_{m} by flotation in a mixture of CHCl_{3} and $\mathrm{CHBr}_{3} . \mathrm{NH}_{4}^{+}$-salt, yellow needles (b-direction needle axis) separated from an $\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$ solution of the N -acid. D_{m} by flotation in a mixture of CCl_{4} and $\mathrm{CH}_{2} \mathrm{BrCl}$.

Crystals: $0.4 \times 0.2 \times 0.1 \mathrm{~mm}$ (both N -acid and NH_{4}^{+}-salt), Enraf-Nonius CAD-4F diffractometer, graphite-monochromatized Mo $K \alpha$, lattice parameters from Guinier-Hägg photographs with $\mathrm{Cu} K \alpha_{1} \quad(\lambda=$ $1.54051 \AA$), N -acid, 30 reflections with $4.85<\theta<$ $40.41^{\circ}, \mathrm{NH}_{4}^{+}$-salt, 25 reflections with $5.40<\theta<$ 19.69°, Si used as an internal standard. N-acid, 2415 unique reflections $(h-6 \rightarrow 6, k 0 \rightarrow 19, l 0 \rightarrow 17)$ with $2.0<\theta<30.0^{\circ}, 1727$ with $I>2.5 \sigma(I)$ used in refinement process. NH_{4}^{+}-salt, 2681 unique reflections $(h 0 \rightarrow 10, k 0 \rightarrow 10, l-22 \rightarrow 22)$ with $2 \cdot 0<\theta<30 \cdot 0^{\circ}$, 1517 with $I>2 \cdot 5 \sigma(I)$ used in refinement process together with 'less-than' reflections $[I<2 \cdot 5 \sigma(I)]$ with calculated values greater than the observed (2306 contributing reflections). Mixed $\omega / 2 \theta$ scan technique, scan angle (N -acid: $1.00^{\circ}+0.35^{\circ}$ tan $\theta, \mathrm{NH}_{4}^{+}$-salt: $1.40^{\circ}+0.35^{\circ} \tan \theta$), standard reflections (N -acid: 153 and $3 \overline{1} \overline{3}, \mathrm{NH}_{4}^{+}$-salt: $\overline{2} \overline{3} 2,20 \overline{8}$ and $10 \overline{6}$) used for orientation control every 100 reflections, intensity check every 10800 s of exposure time by using (N -acid: 006 , NH_{4}^{+}-salt: $\overline{2} \overline{3} 3$), standard intensity variations
© 1986 International Union of Crystallography

[^0]: * Lists of anisotropic thermal parameters and H -atom parameters and a table of observed and calculated structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42716 (9 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Author to whom correspondence should be addressed.
 \dagger Research supported by the Office of Health and Environmental Research, US Department of Energy, under contract DE-AC05840R21400 with Martin Marietta Energy Systems, Inc.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42627 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

